If it's not what You are looking for type in the equation solver your own equation and let us solve it.
68=x^2+4
We move all terms to the left:
68-(x^2+4)=0
We get rid of parentheses
-x^2-4+68=0
We add all the numbers together, and all the variables
-1x^2+64=0
a = -1; b = 0; c = +64;
Δ = b2-4ac
Δ = 02-4·(-1)·64
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*-1}=\frac{-16}{-2} =+8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*-1}=\frac{16}{-2} =-8 $
| 4x+3x-4=4+7x | | 4x+3x-4=3-7+7x | | 10x-3=5x-8 | | 12m-18-6m=-4m+12 | | 2x+2x=-8 | | W=6c-8 | | 5x+3(2x-8)=12 | | 8x+6x=-6 | | 0=0.55x-2 | | -4u+13u+5=6u+31 | | X/5+2/2x+11/20=5x+1/4 | | 0-1+d=17 | | 8x+2(6x-2)=24+6x | | -2x/9=16 | | 3c-0=5 | | -24+24=-3x | | 9=18x0.5 | | (2x-9)+45+106=180 | | 5(10)+6b=39 | | (6x+3)+36+87=180 | | 5(10+6b=39 | | 5x+6=2x-4(2x+3) | | (5x+1)+(5x+19)=180 | | 18-4t=55 | | 4j=11.6 | | -6x-1=15 | | 3x-60=x-50 | | -1=+2x-x | | -3x^2+6x-179=0 | | 3x(2)+14=89 | | 2(x-3)=2x+9-3 | | 5(2x-1)=10x-3 |